Additional info getting math some body: As far more particular, we are going to make ratio off fits so you can swipes right, parse one zeros in the numerator or the denominator to at least one (very important to creating actual-valued logarithms), then make sheer logarithm associated with the worthy of. Which figure alone won’t be instance interpretable, but the comparative overall manner will be.
bentinder = bentinder %>% mutate(swipe_right_price = (likes / (likes+passes))) %>% mutate(match_price = log( ifelse(matches==0,1,matches) / ifelse(likes==0,1,likes))) rates = bentinder %>% see(time,swipe_right_rate,match_rate) match_rate_plot = ggplot(rates) + geom_area(size=0.2,alpha=0.5,aes(date,match_rate)) + geom_effortless(aes(date,match_rate),color=tinder_pink,size=2,se=Not true) + geom_vline(xintercept=date('2016-09-24'),color='blue',size=1) +geom_vline(xintercept=date('2019-08-01'),color='blue',size=1) + annotate('text',x=ymd('2016-01-01'),y=-0.5,label='Pittsburgh',color='blue',hjust=1) + annotate('text',x=ymd('2018-02-26'),y=-0.5,label='Philadelphia',color='blue',hjust=0.5) + annotate('text',x=ymd('2019-08-01'),y=-0.5,label='NYC',color='blue',hjust=-.4) + tinder_theme() + coord_cartesian(ylim = c(-2,-.4)) + ggtitle('Match Price Over Time') + ylab('') swipe_rate_plot = ggplot(rates) + geom_point(aes(date,swipe_right_rate),size=0.dos,alpha=0.5) + geom_easy(aes(date,swipe_right_rate),color=tinder_pink,size=2,se=Not the case) + geom_vline(xintercept=date('2016-09-24'),color='blue',size=1) +geom_vline(xintercept=date('2019-08-01'),color='blue',size=1) + annotate('text',x=ymd('2016-01-01'),y=.345,label='Pittsburgh',color='blue',hjust=1) + annotate('text',x=ymd('2018-02-26'),y=.345,label='Philadelphia',color='blue',hjust=0.5) + annotate('text',x=ymd('2019-08-01'),y=.345,label='NYC',color='blue',hjust=-.